Rebecca Fushimi, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=954Rebecca Fushimi, Ph.D. ​Dr. Fushimi is a research scientist working in the emerging areas of dynamic catalyst science and flexible chemical manufacturing. Her research is focused on using and developing transient kinetic tools, where dynamics in chemical systems can reveal reaction networks and mechanism. She is an expert in the TAP (Temporal Analysis of Products) technique. Using TAP and other dynamic techniques, her research group investigates selective oxidation, dehydrogenation, selective hydrogenation, ammonia synthesis, and other reactions on supported metals and mixed metal oxide catalysts. These experiments provide fundamental information for the development of advanced materials that can reduce the energy intensity of chemical manufacturing. <div class="ExternalClassFA35A54B5B724581AE640D8DD1CFBD4F">​A. Yonge, M.R. Kunz, R. Batchu, Z. Fang, T. Issac, R. Fushimi, A.J. Medford, TAPsolver: A Python package for the simulation and analysis of TAP reactor experiments, Chemical Engineering Journal, 420 (2021) 129377. https://doi.org/10.1016/j.cej.2021.129377<div><br></div><div>Y. Wang, G. Yablonsky, R. Fushimi, Precise composition/kinetic characterization of solid catalysts using temporal analysis of products,  Catalysis: Volume 33, The Royal Society of Chemistry2021, pp. 114-152. https://doi.org/10.1039/9781839163128-00114</div><div><br></div><div>Y. Wang, J. Qian, Z. Fang, M.R. Kunz, G. Yablonsky, A. Fortunelli, W.A. Goddard III, R.R. Fushimi, Understanding Reaction Networks through Controlled Approach to Equilibrium Experiments Using Transient Methods, Journal of the American Chemical Society, 143 (2021) 10998-11006. https://doi.org/10.1021/jacs.1c03158</div><div><br></div><div>S. Sourav, Y. Wang, D. Kiani, J. Baltrusaitis, R.R. Fushimi, I.E. Wachs, New Mechanistic and Reaction Pathway Insights for Oxidative Coupling of Methane (OCM) over Supported Na2WO4/SiO2 Catalysts, Angewandte Chemie International Edition, 60 (2021) 21502-21511. https://doi.org/10.1002/anie.202108201</div><div><br></div><div>S. Sourav, Y. Wang, D. Kiani, J. Baltrusaitis, R.R. Fushimi, I.E. Wachs, Resolving the Types and Origin of Active Oxygen Species Present in Supported Mn-Na2WO4/SiO2 Catalysts for Oxidative Coupling of Methane, ACS Catalysis, 11 (2021) 10288-10293. https://doi.org/10.1021/acscatal.1c02315</div><div><br></div><div>M.R. Kunz, A. Yonge, Z. Fang, R. Batchu, A.J. Medford, D. Constales, G. Yablonsky, R. Fushimi, Data driven reaction mechanism estimation via transient kinetics and machine learning, Chemical Engineering Journal, 420 (2021) 129610. https://doi.org/10.1016/j.cej.2021.129610</div><div><br></div><div>M.R. Kunz, A. Yonge, R. Batchu, Z. Fang, Y. Wang, G. Yablonsky, A.J. Medford, R. Fushimi, A Priori Calibration of Transient Kinetics Data via Machine Learning, arXiv preprint arXiv:2109.15042, (2021). https://arxiv.org/pdf/2109.15042.pdf</div><div><br></div><div>Z. Fang, L. Li, D.A. Dixon, R.R. Fushimi, E.J. Dufek, Nature of Oxygen Adsorption on Defective Carbonaceous Materials, The Journal of Physical Chemistry C, (2021) 20686-20696. https://doi.org/10.1021/acs.jpcc.1c06741</div><div><br></div><div>Z. Fang, M.P. Confer, Y. Wang, Q. Wang, M.R. Kunz, E.J. Dufek, B. Liaw, T.M. Klein, D.A. Dixon, R. Fushimi, Formation of Surface Impurities on Lithium–Nickel–Manganese–Cobalt Oxides in the Presence of CO2 and H2O, Journal of the American Chemical Society, 143 (2021) 10261-10274. https://doi.org/10.1021/jacs.1c03812</div><div><br></div><div>R. Batchu, Z. Thompson, Z. Fang, W.E. Windes, E.J. Dufek, R.R. Fushimi, Role of Surface Diffusion in Formation of Unique Reactivity for Graphite Oxidation: Time-Resolved Measurements in a Pulsed Diffusion Reactor, Carbon, (2021) 781-790. https://doi.org/10.1016/j.carbon.2021.06.061</div><div><br></div><div>N. Turaeva, R. Fushimi, G. Yablonsky, Kinetic Expression for Optimal Catalyst Electronic Configuration: The Case of Ammonia Decomposition, The Journal of Physical Chemistry C, (2020). https://doi.org/10.1021/acs.jpcc.0c08432</div><div><br></div><div>M.R. Kunz, R. Batchu, Y. Wang, Z. Fang, G. Yablonsky, D. Constales, J. Pittman, R. Fushimi, Probability theory for inverse diffusion: Extracting the transport/kinetic time-dependence from transient experiments, Chemical Engineering Journal, 402 (2020) 125985. https://doi.org/10.1016/j.cej.2020.125985</div><div><br></div><div>Z. Fang, L.-C. Wang, Y. Wang, E. Sikorski, S. Tan, K.D. Li-Oakey, L. Li, G. Yablonsky, D.A. Dixon, R.R. Fushimi, Pt-Assisted Carbon Remediation of Mo2C Materials for CO Disproportionation, ACS Catalysis, 10 (2020) 1894-1911. http://doi.org/10.1021/acscatal.9b05225</div><div><br></div><div>Y. Wang, M.R. Kunz, S. Siebers, H. Rollins, J. Gleaves, G. Yablonsky, R. Fushimi, Transient Kinetic Experiments within the High Conversion Domain: The Case of Ammonia Decomposition, Catalysts, 9 (2019) 104. https://doi.org/10.3390/catal9010104</div><div><br></div><div>Y. Wang, M.R. Kunz, Z. Fang, G. Yablonsky, R.R. Fushimi, Accumulation Dynamics as a New Tool for Catalyst Discrimination: An Example from Ammonia Decomposition, Industrial & Engineering Chemistry Research, 58 (2019) 10238-10248. https://doi.org/10.1021/acs.iecr.9b01470</div><div><br></div><div>Y. Wang, M.R. Kunz, D. Constales, G. Yablonsky, R. Fushimi, Rate/Concentration Kinetic Petals: A Transient Method to Examine the Interplay of Surface Reaction Processes, The Journal of Physical Chemistry A, 123 (2019) 8717-8725. https://doi.org/10.1021/acs.jpca.9b05911</div><div><br></div><div>Z. Fang, G. Yablonsky, R. Fushimi, Method of mitigating catalyst deactivation through site-specific carbon collection,  US Provisional Patent US 62/895,592 2019. </div><div><br></div><div>D. Constales, Z. Fang, M.R. Kunz, G. Yablonsky, R. Fushimi, Methods for determining the intrinsic kinetic characteristics of irreversible adsorption processes, Chemical Engineering Science, 207 (2019) 344-351. https://doi.org/10.1016/j.ces.2019.06.026</div><div><br></div><div>A.J. Medford, S. Ewing, M.R. Kunz, T. Borders, R. Fushimi, Extracting knowledge from data through catalysis informatics, ACS Catalysis, 8(8) (2018) 7403-7429. https://doi.org/10.1021/acscatal.8b01708</div><div><br></div><div>R. Kunz, E.A. Redekop, T. Borders, L. Wang, G.S. Yablonsky, R. Fushimi, Pulse Response Analysis Using the Y-Procedure: A Data Science Approach, Chemical Engineering Science, 192 (2018) 46-60. https://doi.org/10.1016/j.ces.2018.06.078</div><div><br></div><div>K. Gering, C. Baroi, R. Fushimi, Transport Modeling and Mapping of Pulsed Reactor Dynamics Near and Beyond the Onset of Viscid Flow, Chemical Engineering Science, 192 (2018) 576-590. https://doi.org/10.1016/j.ces.2018.07.060</div><div><br></div><div>R. Fushimi, J. Gleaves, Recent Advances in Dynamic Chemical Characterization using Temporal Analysis of Products, Current Opinion in Chemical Engineering, 21 (2018) 10-21. https://doi.org/10.1016/j.coche.2018.02.002</div><div><br></div><div>S. Tan, L. Wang, S. Saha, R.R. Fushimi, D. Li, Active Site and Electronic Structure Elucidation of Pt Nanoparticles Supported on Phase-Pure Molybdenum Carbide Nanotubes, ACS Applied Materials & Interfaces, 9 (2017) 9815-9822. https://doi.org/10.1021/acsami.7b01217</div><div><br></div><div>K. Morgan, N. Maguire, R. Fushimi, J. Gleaves, A. Goguet, M. Harold, E. Kondratenko, U. Menon, Y. Schuurman, G. Yablonsky, Forty years of temporal analysis of products, Catalysis Science & Technology, 7 (2017) 2416-2439. https://doi.org/10.1039/C7CY00678K (</div><div><br></div><div>S. Lwin, W. Diao, C. Baroi, A.M. Gaffney, R.R. Fushimi, Characterization of MoVTeNbOx Catalysts during Oxidation Reactions Using In Situ/Operando Techniques: A Review, Catalysts, 7 (2017) 109. https://doi.org/10.3390/catal7040109</div><div><br></div><div>D. Constales, G.S. Yablonsky, L. Wang, W. Diao, V.V. Galvita, R. Fushimi, Precise non-steady-state characterization of solid active materials with no preliminary mechanistic assumptions, Catalysis Today, (2017). https://doi.org/10.1016/j.cattod.2017.04.036</div><div><br></div><div>C. Baroi, A.M. Gaffney, R. Fushimi, Process economics and safety considerations for the oxidative dehydrogenation of ethane using the M1 catalyst, Catalysis Today, 298 (2017) 138-144. https://doi.org/10.1016/j.cattod.2017.05.041</div><div><br></div><div>L.-C. Wang, M.L. Personick, S. Karakalos, R. Fushimi, C.M. Friend, R.J. Madix, Active sites for methanol partial oxidation on nanoporous gold catalysts, Journal of Catalysis, 344 (2016) 778-783. https://doi.org/10.1016/j.jcat.2016.08.012</div><div><br></div><div>L.-C. Wang, C. Friend, R. Fushimi, R.J. Madix, Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts, Faraday Discussions, 188 (2016) 57-67. https://doi.org/10.1039/C5FD00161G</div><div><br></div><div>R. Fushimi, J. Gleaves, G. Yablonsky, Experimental Methods for the Determination of Parameters, in: Z.I. Onsan, A.K. Avci (Eds.) Multiphase Catalytic Reactors: Theory, Design, Manufacturing, and Applications, John Wiley & Sons, 2015. https://doi.org/10.1002/9781119248491.ch10</div><div><br></div><div>R. Fushimi, J. Gleaves, G.S. Yablonsky, Interrogative Kinetics: A new methodology for kinetic mapping of emergent catalytic properties, in Modern Application of High-Throughput R&D in Heterogeneous Catalysis, A. Hagemeyer, A. Vople, eds., (2014) 227-256. https://doi.org/10.2174/9781608058723114010010 </div><div><br></div><div>R. Fushimi, A. Gaffney, The New ChemPren Process for the Conversion of Waste Plastic to Chemicals and Fuel, Top Catal, 57 (2014) 1412-1418. https://doi.org/10.1007/s11244-014-0312-6</div><div><br></div><div>E.A. Redekop, G.S. Yablonsky, V.V. Galvita, D. Constales, R. Fushimi, J.T. Gleaves, G.B. Marin, Momentary Equilibrium (ME) in transient kinetics and its application for estimating the concentration of catalytic sites, Industrial & Engineering Chemistry Research, 52 (2013) 15417-15427. https://doi.org/10.1021/ie400677b</div><div><br></div><div>J.T. Gleaves, G. Yablonsky, X. Zheng, R. Fushimi, P.L. Mills, Temporal analysis of products (TAP)—recent advances in technology for kinetic analysis of multi-component catalysts, Journal of Molecular Catalysis A: Chemical, 315 (2010) 108-134. https://doi.org/10.1016/j.molcata.2009.06.017</div><div><br></div><div>R. Fushimi, X. Zheng, J.T. Gleaves, G.S. Yablonsky, A. Gaffney, M. Clark, S. Han, Techniques for Fabricating Nanoscale Catalytic Circuits, Top. Catal., 49 (2008) 167-177. https://doi.org/10.1007/s11244-008-9090-3</div><div><br></div><div>R. Fushimi, J.T. Gleaves, G. Yablonsky, A. Gaffney, M. Clark, S. Han, Combining TAP-2 experiments with atomic beam deposition of Pd on quartz particles, Catal. Today, 121 (2007) 170-186. https://doi.org/10.1016/j.cattod.2006.07.061</div><div><br></div><div>R. Fushimi, S.O. Shekhtman, A. Gaffney, S. Han, G.S. Yablonsky, J.T. Gleaves, TAP vacuum pulse-response and normal-pressure studies of propane oxidation over MoVTeNb oxide catalysts, Industrial & engineering chemistry research, 44 (2005) 6310-6319. https://doi.org/10.1021/ie049162k</div><div><br></div><div>R. Fushimi, S.O. Shekhtman, A. Gaffney, S. Han, G.S. Yablonsky, J.T. Gleaves, TAP Vacuum Pulse-Response and Normal-Pressure Studies of Propane Oxidation over MoVTeNbO Oxide Catalysts, Ind. Eng. Chem. Res., 44 (2005) 6310-6319. https://doi.org/10.1021/ie049162k</div><div><br></div><div>S.O. Shekhtman, G.S. Yablonsky, J.T. Gleaves, R.R. Fushimi, Thin-zone TAP reactor as a basis of "state-by-state transient screening", Chem. Eng. Sci., 59 (2004) 5493-5500. https://doi.org/10.1016/j.ces.2004.09.015</div><div><br></div><div>S.O. Shekhtman, G.S. Yablonsky, J.T. Gleaves, R. Fushimi, “State defining” experiment in chemical kinetics—primary characterization of catalyst activity in a TAP experiment, Chemical engineering science, 58 (2003) 4843-4859. https://doi.org/10.1016/j.ces.2003.08.005</div><div><br></div><div>G. Yablonsky, R. Fushimi, G.B. Marin, Kinetic Measurements in Heterogeneous Catalysis, Kirk‐Othmer Encyclopedia of Chemical Technology, (2000) 1-44. https//doi.org/10.1002/0471238961.1109140513010704.a01.pub3</div><div><br>​<br></div><p><br></p></div>Catalysis;Materials Characterization;Advanced Manufacturing Leadershiphttps://bios.inl.gov/BioPhotos/Fushimi_Rebecca.JPG

​​

 

​​