Profile Picture

Guoping Cao

Research Areas:

Biography:

​Dr. Cao is currently a Research Scientist at Department of Pyrochemistry and Molten Salt Systems of Idaho National Laboratory (INL), working on pyroprocessing of spent nuclear fuels, molten salt reactors development, electrochemistry and electrometallurgy of molten salt systems. Before joining INL in 2016, he was a Research Scientist in the Department of Nuclear Engineering and Engineering Physics at the University of Wisconsin-Madison, working on materials in different extreme nuclear environments including molten salt, supercritical carbon dioxide, impure helium, and supercritical water. His research expertise spans a broad spectrum of areas including electrometallurgy, materials science, metal casting and welding, microstructure and mechanical property relationship, failure analysis, advanced characterization, high temperature oxidation and corrosion and/or mechanical property degradation of materials. He has extensive experience and expertise in molten salt chemistry and corrosion in molten fluoride and chloride salts for nuclear applications.

Digital Profiles:
Education:

​Ph.D in materials science and engineering, University of Wisconsin - Madison, 2006

M.S. in materials science and engineering, University of Wisconsin - Madison, 2003

B.S. in metallurgical engineering, Central South University, Hunan, China, 1993




Publications:

[1]        A.N. Williams, G. Cao, M.R. Shaltry, Voltammetry measurements in lithium chloride-lithium oxide (LiCl–Li2O) salt: An evaluation of working electrode materials, J. Nucl. Mater. 546 (2021) 152760. https://doi.org/10.1016/j.jnucmat.2020.152760.

[2]        G. Cao, S. Herrmann, S. Li, R. Hoover, J. King, B. Serrano-Rodriguez, K. Marsden, Development of a Li2O Sensor Based on a Yttria Stabilized Zirconia Membrane for Oxide Reduction in a Molten LiCl-Li2O Electrolyte at 650°C, Nucl. Technol. 206 (2020). https://doi.org/10.1080/00295450.2019.1666601.

[3]        G.L. Fredrickson, G. Cao, P.K. Tripathy, M.R. Shaltry, S.D. Herrmann, T.-S. Yoo, T.Y. Karlsson, D.C. Horvath, R. Gakhar, A.N. Williams, R.O. Hoover, W.C. Phillips, K.C. Marsden, Review—Electrochemical Measurements in Molten Salt Systems: A Guide and Perspective, J. Electrochem. Soc. 166 (2019) D645–D659. https://doi.org/10.1149/2.0991913jes.

[4]        H. Yeom, B. Hauch, G. Cao, B. Garcia-Diaz, M. Martinez-Rodriguez, H. Colon-Mercado, L. Olson, K. Sridharan, Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate, Thin Solid Films. 615 (2016) 202–209. https://doi.org/10.1016/j.tsf.2016.07.024.

[5]        J. Gao, F.R. Wan, G.P. Cao, K. Sridharan, T. Allen, Analysis of oxides formed on the surface of the alloy 690 in hydrogenated supercritical water, Acta Metall. Sin. (English Lett. 29 (2016) 774–781. https://doi.org/10.1007/s40195-016-0440-z.

[6]        G. Zheng, B. Kelleher, G. Cao, M. Anderson, T. Allen, K. Sridharan, Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt, J. Nucl. Mater. 461 (2015) 143–150. https://doi.org/10.1016/j.jnucmat.2015.03.004.

[7]        N. Zweibaum, G. Cao, A.T. Cisneros, B. Kelleher, M.R. Laufer, R.O. Scarlat, J.E. Seifried, M.H. Anderson, C.W. Forsberg, E. Greenspan, L.W. Hu, P.F. Peterson, K. Sridharan, Phenomenology, methods and experimental program for fluoride-salt-cooled, high-temperature reactors (FHRs), Prog. Nucl. Energy. 77 (2014) 390–405. https://doi.org/10.1016/j.pnucene.2014.04.008.

[8]        G. Cao, S. Kou, Y.A. Chang, Hot Cracking Susceptibility of Binary Mg-Al Alloys, 2014. https://doi.org/10.1002/9781118859803.ch34.

[9]        J. Bischoff, A.T. Motta, C. Eichfeld, R.J. Comstock, G. Cao, T.R. Allen, Corrosion of ferritic-martensitic steels in steam and supercritical water, J. Nucl. Mater. 441 (2013) 604–611. https://doi.org/10.1016/j.jnucmat.2012.09.037.

[10]      G. Cao, S.J. Weber, S.O. Martin, K. Sridharan, M.H. Anderson, T.R. Allen, Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment, J. Nucl. Mater. 441 (2013). https://doi.org/10.1016/j.jnucmat.2013.04.083.

[11]      A. Erman, J. Groza, X. Li, H. Choi, G. Cao, Nanoparticle effects in cast Mg-1wt% SiC nano-composites, Mater. Sci. Eng. A. 558 (2012) 39–43. https://doi.org/10.1016/j.msea.2012.07.048.

[12]      G. Cao, V. Firouzdor, K. Sridharan, M. Anderson, T.R. Allen, Corrosion of austenitic alloys in high temperature supercritical carbon dioxide, Corros. Sci. 60 (2012). https://doi.org/10.1016/j.corsci.2012.03.029.

[13]      G. Cao, V. Firouzdor, T.R. Allen, Stress corrosion cracking of a highly cold worked INCONEL alloy 690 in deaerated high temperature water, 2012.

[14]      G. Cao, S.J. Weber, S.O. Martin, M.H. Anderson, K. Sridharan, T.R. Allen, Spectral emissivity measurements of candidate materials for very high temperature reactors, Nucl. Eng. Des. 251 (2012). https://doi.org/10.1016/j.nucengdes.2011.10.067.

[15]      G. Cao, S.J. Weber, S.O. Martin, T.L. Malaney, S.R. Slattery, M.H. Anderson, K. Sridharan, T.R. Allen, In situ measurements of spectral emissivity of materials for very high temperature reactors, Nucl. Technol. 175 (2011). https://doi.org/10.13182/NT11-A12317.

[16]      G. Cao, V. Firouzdor, T. Allen, Stress corrosion cracking of austenitic alloys in supercritical water, in: 15th Int. Conf. Environ. Degrad. Mater. Nucl. Power Syst. React. 2011, 2011.

[17]      L. Olson, J. Ambrosek, G. Cao, K. Sridharan, M. Anderson, T. Allen, Molten salts for nuclear cogeneration, 2010. https://doi.org/10.1002/9780470930991.ch14.

[18]      G. Cao, C. Zhang, H. Cao, Y.A. Chang, S. Kou, Hot-tearing susceptibility of ternary Mg-Al-Sr alloy castings, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41 (2010). https://doi.org/10.1007/s11661-009-0134-5.

[19]      G. Cao, I. Haygood, S. Kou, Onset of hot tearing in ternary Mg-Al-Sr alloy castings, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41 (2010). https://doi.org/10.1007/s11661-010-0248-9.

[20]      G. Cao, S.J. Weber, S.O. Martin, M.H. Anderson, K. Sridharan, T.R. Allen, Spectral emissivity measurements of candidate alloys for very high temperature reactors in high temperature air environment, in: Trans. Am. Nucl. Soc., 2010.

[21]      M. De Cicco, H. Konishi, G. Cao, H.S. Choi, L.S. Turng, J.H. Perepezko, S. Kou, R. Lakes, X. Li, Strong, ductile magnesium-zinc nanocomposites, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40 (2009) 3038–3045. https://doi.org/10.1007/s11661-009-0013-0.

[22]      G. Cao, H. Konishi, X. Li, Mechanical properties and microstructure of Mg/SiC nanocomposites fabricated by ultrasonic cavitation based nanomanufacturing, J. Manuf. Sci. Eng. Trans. ASME. 130 (2008). https://doi.org/10.1115/1.2823086.

[23]      G. Cao, H. Konishi, X. Li, Recent developments on ultrasonic cavitation based solidification processlng of bulk magnesium nanocomposites, Int. J. Met. 2 (2008). https://doi.org/10.1007/BF03355422.

[24]      H. Cao, C. Zhang, J. Zhu, G. Cao, S. Kou, R. Schmid-Fetzer, Y.A. Chang, A computational/directional solidification method to establish saddle points on the Mg-Al-Ca liquidus, Scr. Mater. 58 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.023.

[25]      G. Cao, J. Kobliska, H. Konishi, X. Li, Tensile properties and microstructure of SiC nanoparticle-reinforced Mg-4Zn alloy fabricated by ultrasonic cavitation-based solidification processing, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39 A (2008). https://doi.org/10.1007/s11661-007-9453-6.

[26]      G. Cao, H. Choi, J. Oportus, H. Konishi, S. Kou, R. Lakes, X. Li, Mg-6Zn/1.5%SiC nanocomposites fabricated by ultrasonic cavitation based solidification processing, in: Magnes. Technol., 2008.

[27]      G. Cao, H. Konishi, X. Li, Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing, Mater. Sci. Eng. A. 486 (2008). https://doi.org/10.1016/j.msea.2007.09.054.

[28]      G. Cao, H. Choi, H. Konishi, S. Kou, R. Lakes, X. Li, Mg-6Zn/1.5%SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing, J. Mater. Sci. 43 (2008). https://doi.org/10.1007/s10853-008-2785-9.

[29]      H. Cao, C. Zhang, J. Zhu, G. Cao, S. Kou, R. Schmid-Fetzer, Y.A. Chang, Experiments coupled with modeling to establish the Mg-rich phase equilibria of Mg-Al-Ca, Acta Mater. 56 (2008). https://doi.org/10.1016/j.actamat.2008.07.003.

[30]      G. Cao, H. Choi, J. Oportus, H. Konishi, X. Li, Study on tensile properties and microstructure of cast AZ91D/AlN nanocomposites, Mater. Sci. Eng. A. 494 (2008). https://doi.org/10.1016/j.msea.2008.04.070.

[31]      G. Cao, S. Kou, Hot cracking susceptibility of ternary Mg-Al-Ca alloys, 2007.

[32]      G. Cao, H. Nan, C. Xie, Some engineering aspects of thermohydrogen processing of large complex titantum castings, in: TMS Annu. Meet., 2007.

[33]      G. Cao, S. Kou, Predicting and reducing liquation-cracking susceptibility based on temperature vs. fraction solid, Weld. J. (Miami, Fla). 85 (2006).

[34]      G. Cao, S. Kou, Hot cracking of binary Mg-Al alloy castings, Mater. Sci. Eng. A. 417 (2006). https://doi.org/10.1016/j.msea.2005.10.050.

[35]      G. Cao, S. Kou, Hot tearing of ternary Mg-Al-Ca alloy castings, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 37 (2006). https://doi.org/10.1007/s11661-006-1059-x.

[36]      G. Cao, S. Kou, Liquation cracking in full penetration Al-Si welds, Weld. J. (Miami, Fla). 84 (2005).

[37]      G. Cao, S. Kou, Friction stir welding of 2219 aluminum: Behavior of θ (Al2Cu) particles, Weld. J. (Miami, Fla). 84 (2005).

[38]      G. Cao, S. Kou, Liquation cracking in full penetration Al-Si welds, Weld. J. (Miami, Fla). 84 (2005).

[39]      C. Huang, G. Cao, S. Kou, Liquation cracking in partial penetration aluminium welds: Assessing tendencies to liquate, crack and backfill, Sci. Technol. Weld. Join. 9 (2004) 149–157. https://doi.org/10.1179/136217104225017071.


Patents:
  • ​Guoping Cao, Shelly Li, Steven Herrmann, Brenda Serrano-Rodriguez, US 11,131,648 B2, Potentiometric Sensor, 2021
  • Sindo Kou, Guoping Cao, US 7,078,647 B2, Arc-enhanced Friction Stir Welding, 2006


Awards:

​​Howard F. Taylor Award, American Foundry Society (AFS), 2008

Best Paper Award, American Foundry Society (AFS), 2008

William Spraragen Memorial Award, American Welding Society (AWS), 2007

Warren F. Savage Memorial Award, American Welding Society (AWS), 2006

Research Interests:
  • ​Molten Salt Chemistry 
  • Electrochemistry
  • Molten Salt Reactors
  • Materials Corrosion
  • Advanced Materials Manufacturing
  • Advanced Characterization​

Version: 2.0
Created at 3/23/2022 1:59 PM by Tiffany M. Adams
Last modified at 7/28/2022 10:12 AM by Tiffany M. Adams