Profile Picture

Lucun Wang, Ph.D.

Research Scientist

Research Areas:
Chemical Processing

Biography:

Dr. Lucun Wang was a postdoctoral fellow at Harvard University studying oxidative transformation of alcohols on nanoporous gold catalysts under different pressure conditions using both fixed-bed flow reactors and temporal analysis of products (TAP) reactors. He earned his doctorate in physical chemistry and bachelor’s in chemistry at Fudan University, China. Following his PhD study, he has worked as an Alexander-von-Humboldt Research Fellow at Ulm University in Germany, where his research was focused on the reaction mechanism of CO oxidation and water-gas-shift reaction on gold catalysts using the TAP reactor. He has published over 40 papers in peer-reviewed journals in the area of surface chemistry and catalysis.

Education:

​Ph.D., Physical Chemistry - Fudan University, Shanghai, China

B.S., Chemistry - Fudan University, Shanghai, China

Affiliations:

​American Chemical Society

Publications:

Exploiting basic principles to control the selectivity of the vapor phase catalytic oxidative cross-coupling of primary alcohols over nanoporous gold catalysts. L.C. Wang, K.J. Stowers, B. Zugic, M.L. Personick, M.M. Biener, J. Biener, C.M. Friend, R.J. Madix. J. Catal. 2015, 329, 78–86.

 

Methyl ester synthesis catalyzed by nanoporous gold: From 10-9 torr to 1 atm. L.C. Wang, K.J. Stowers, B. Zugic, M.M. Biener, J. Biener, C.M. Friend, R.J. Madix. Catal. Sci & Tech. 2015, 5, 1299-1306.

 

Reactive removal of surface oxygen by H2, CO and CO/H2 on a Au/CeO2 catalyst and its relevance for the preferential CO oxidation (PROX) and Reverse Water Gas Shift (RWGS) reaction L.C. Wang, D. Widmann, R.J. Behm. Catal. Sci & Tech. 2015, 5, 925-941.

 

Catalytic activity of nanostructured Au: Scale effects vs. bimetallic / bifunctional effects in low temperature CO oxidation on nanoporous Au. L.C. Wang, Y. Zhong, H.J. Jin, D. Widmann, J. Weissmüller, R.J. Behm. Beilstein J. Nanotechnol. 2013, 4, 111-128.

 

TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst – A first step toward identifying a redox mechanism in the Reverse Water–Gas Shift reaction. L.C. Wang, M. Tahvildar Khazaneh, D. Widmann, R.J. Behm. J. Catal. 2013, 302, 20-30.

 

On the role of residual Ag in nanoporous Au catalysts for CO oxidation: A combined micro-reactor and TAP reactor study. L.C. Wang, Y. Zhong, D. Widmann, J. Weissmüller, R.J. Behm. ChemCatChem. 2012, 4, 251-259.

 

Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor. L.C. Wang, H.J. Jin, D. Widmann, J. Weissmüller, R.J. Behm. J. Catal. 2011, 278, 219-227. (Highlighted in NewsRx Science Letters 2011)

 

Gold nanoparticles supported on hydroxylapatite as high performance catalysts for low temperature CO oxidation. J. Huang, L.C. Wang, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan. Appl. Catal. B: Environ. 2011, 101, 560-569.

 

Study of catalytic sites on ruthenium for hydrogenation of N-ethylcarbazole: Implications of hydrogen storage via reversible catalytic hydrogenation. K.M. Eblagon, K. Tam, K.M.K. Yu, S.L. Zhao, X.Q. Gong, H. He, L. Ye, L.C. Wang, A.J. Ramirez-Cuesta, S.C. Tsang. J. Phys. Chem. C 2010, 114, 9720–9730.

 

Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen Source. L. He, L.C. Wang, H. Sun, J. Ni, Y. Cao, H.Y. He, K.N. Fan. Angew. Chem. Int. Ed. 2009, 48, 9538 –9541. (Highlighted in NASW News 2009)

 

Aqueous room-temperature gold-catalyzed chemoselective transfer hydrogenation of aldehydes. L. He, J. Ni, L.C. Wang, F.J. Yu, Y. Cao, H.Y. He, K.N. Fan. Chem. Eur. J. 2009, 15, 11833-11836. (Highlighted in Synfacts 2010)

 

Mesostructured CeO2 as an Effective Catalyst for Styrene Synthesis by Oxidative Dehydrogenation of Ethylbenzene. J. Xu, L.C. Wang, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan. Catal. Lett. 2009, 133, 307-313.

 

Highly selective Ce-Ni-O catalysts for efficient low temperature oxidative dehydrogenation of propane. Y.M. Liu, L.C. Wang, M. Chen, J. Xu, Y. Cao, H.Y. He, K.N. Fan. Catal. Lett. 2009, 130, 350-354.

 

Effect of pretreatment atmosphere on CO oxidation over α-Mn2O3 supported gold catalysts. L.C. Wang, L. He, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, J. H. Zhuang. J. Catal. 2009, 264, 145-153. (Highlighted in Gold Bulletin 2009)

 

Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for Low-temperature CO oxidation. X.S. Huang, H. Sun, L.C. Wang, Y.M. Liu, K.N. Fan, Y. Cao. Appl. Catal. B: Environ. 2009, 90, 224-232.

 

Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. Q. Liu, L.C. Wang, M. Chen, Y. Cao, H.Y. He, K.N. Fan. J. Catal. 2009, 263, 104-113.

 

Gold nanoparticles supported on manganese oxides for Low temperature CO oxidation. L.C. Wang, Q. Liu, X.S. Huang, Y.M. Liu, Y. Cao, K.N. Fan, Appl. Catal. B: Environ. 2009, 88, 204-212. (Highlighted in Gold Bulletin 2009)

 

Gold nanoparticles deposited on manganese(III) oxide as novel efficient catalyst for low temperature CO oxidation. L.C. Wang, X.S. Huang, Q. Liu, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, J. H. Zhuang, J. Catal. 2008, 259, 66-74.

 

MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation. L.C. Wang, Y.M. Liu, M. Chen, Y. Cao, H.Y. He, K.N. Fan. J. Phys. Chem. C 2008, 112, 6981-6987.

 

Solvent-free selective oxidation of alcohols by molecular oxygen over gold nanoparticles supported on beta-MnO2 nanorods. L.C. Wang, L. He, Q. Liu, Y.M. Liu, M. Chen, Y. Cao, H.Y. He, K.N. Fan. Appl. Catal. A: Gen. 2008, 344, 150-157.

 

Ga-Al mixed-oxide-supported gold nanoparticles with enhanced activity for aerobic alcohol oxidation. F.Z. Su, Y.M. Liu, L.C. Wang, Y. Cao, H.Y. He, K.N. Fan. Angew. Chem. Int. Ed. 2008, 47, 334-337.

 

Aerobic oxidation of alcohols catalyzed by gold nanoparticles supported on gallia polymorphs. F.Z. Su, M. Chen, L.C. Wang, X.S. Huang, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan. Catal. Comm. 2008, 9, 1027-1032.

 

Waste-free soft reactive grinding synthesis of high-surface-area copper-manganese spinel oxide catalysts highly effective for methanol steam reforming. Q. Liu, L.C. Wang, M. Chen, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan. Catal. Lett. 2008, 121, 144-150.

 

Progress in research for high performance gold nanocatalysts. L.C. Wang, F.Z. Su, X.S. Huang, Y. Cao, Petrochem. Tech. 2007, 36, 867-873.

 

Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique. L.C. Wang, Q. Liu, M. Chen, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan. J. Phys. Chem. C 2007, 111, 16549-16557.

 

Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis. L.C. Wang, Y.M. Liu, M. Chen, Y. Cao, H.Y. He, G.S. Wu, W.L. Dai, K.N. Fan. J. Catal. 2007, 246, 193-204. (Top 25 List of Most Downloaded Articles for Journal of Catalysis – January To March 2007)

 

Highly effective methanol steam reforming Cu/ZnO catalyst prepared by a dry mechanochemical approach based on oxalate precursor synthesis. L.C. Wang, Y.M. Liu, Y. Cao, G.S. Wu, C.Z. Yao, W.L. Dai, H.Y. He, K.N. Fan. Acta Chim. Sinica 2007, 65, 173-176.

 

Microwave-accelerated solvent-free aerobic oxidation of benzyl alcohol over efficient and reusable manganese oxides. Y. Su, L.C. Wang, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan. Catal. Comm. 2007, 8, 2181-2185.

 

Highly effective hydrogen production from steam reforming of methanol over SBA-15-modified Cu/ZnO/Al2O3 catalysts. C.Z. Yao, X.R. Zhang, L.C. Wang, Y. Cao, W.L. Dai, K.N. Fan, D. Wu, Y.H. Sun. Acta Chim. Sinica 2006, 64, 269-272.

 

Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts. C.Z. Yao, L.C. Wang, Y.M. Liu, G.S. Wu, Y. Cao, W.L. Dai, H.Y. He, K.N. Fan. Appl. Catal. A: Gen. 2006, 297, 151-158.

 

Research on the role of reverse hydrogen and water spillover in methanol decomposition over Cu/ZrO2 catalyst. G.S. Wu, L.C. Wang, Y.M. Liu, Y. Cao, W.L. Dai, H.Y. He, K.N. Fan. Acta Chim. Sinica 2006, 64, 1017-1021.

 

Implication of the role of oxygen anions and oxygen vacancies for methanol decomposition over zirconia supported copper catalysts. G.S. Wu, L.C. Wang, Y.M. Liu, Y. Cao, W.L. Dai, H.Y. He, K.N. Fan. Appl. Surf. Sci. 2006, 253, 974-982.

 

Tungsten-containing MCF silica as active and recyclable catalysts for liquid-phase oxidation of 1,3-butanediol to 4-hydroxy-2-butanone. Y. Su, Y.M. Liu, L.C. Wang, M. Chen, Y. Cao, W.L. Dai, H.Y. He, K.N. Fan. Appl. Catal. A: Gen. 2006, 315, 91-100.

 

Chromium supported on mesocellular silica foam (MCF) for oxidative dehydrogenation of propane. Y.M. Liu, W.L. Feng, L.C. Wang, Y. Cao, W.L. Dai, H.Y. He, K.N. Fan. Catal. Lett. 2006, 106, 145-152.

 

Microwave-irradiation promoted Cu/ZnO/Al2O3 catalyst for hydrogen production from steam reforming of methanol. X.R. Zhang, C.Z. Yao, L.C. Wang, Y. Cao, D. Wu, Y.H. Sun, W.L. Dai, K.N. Fan. Chem. J. Chin. Univ.-Chin. 2005, 26, 1137-1139.

 

A highly efficient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam reforming of methanol. X.R. Zhang, L.C. Wang, C.Z. Yao, Y. Cao, W.L. Dai, H.Y. He, K.N. Fan. Catal. Lett. 2005, 102, 183-190.

 

A unique microwave effect on the microstructural modification of Cu/ZnO/Al2O3 catalysts for steam reforming of methanol. X.R. Zhang, L.C. Wang, Y. Cao, W.L. Dai, H.Y. He, K.N. Fan. Chem. Comm. 2005, 4104-4106.

 

Highly effective hydrogen production from steam reforming of methanol over CNTs-promoted Cu/ZnO/Al2O3 catalysts. X.R. Zhang, C.Z. Yao, L.C. Wang, Y. Cao, W.L. Dai, K.N. Fan, D. Wu, Y.H. Sun. Acta Chim. Sinica 2004, 62, 2191-2194.

 

Highly effective hydrogen production from steam reforming of CH3OH over Cu/ZnO/Al2O3 catalysts promoted by nanostructured carbon materials. X.R. Zhang, L.C. Wang, C.Z. Yao, Y. Cao, W.L. Dai, K.N. Fan, D. Wu, Y.H. Sun. Chem. J. Chin. Univ.-Chin. 2004, 25, 2125-2127.

Patents:

Nanometer copper base catalyst for preparing 1,3-propanediol by hydrogenation of 3-hydroxy methyl propionate and its preparation method.Z.K. Zhao, Y. Cao, L.C. Wang, Y.Z. Ying, J.Q. Yang, X.H. Zhang, Y.M. Liu, K.N. Fan. CN1911507-A, 2007.

 

Nano carbon material modified copper base catalyst and its preparing method.X.R. Zhang, L.C. Wang, M. Gao, Y. Cao, W.L. Dai, K.N. Fan. CN1301793-C, 2007.

 

Copper base catalyst in use for preparing hydrogen by reforming vapor of methanol.X.R. Zhang, L.C. Wang, M. Gao, Y. Cao, W.L. Dai, K.N. Fan. CN1291784-C, 2006.

 

Nano-copper base catalyst used for methanol aqueous vapour reforming hydrogen producing and its preparation method.Y. Cao, L.C. Wang, W.L. Dai, K.N. Fan. CN1785513-A, 2006.

 

Cu-Zr catalyst for steam reforming of methanol to prepare hydrogen and its preparation. Y. Cao, C.Z. Yao, L.C. Wang, Y.M. Liu, K.N. Fan. CN1772378-A, 2006.

 

Copper-base catalyst of methanol steam reintegrating hydrogen manufacturing and preparation thereof.Y. Cao, X.R. Zhang, L.C. Wang, W.L. Dai, K.N. Fan. CN1680027-A, 2005.

Presentations:

Redox processes on a Au/CeO2 catalyst and its relevance for the reverse water gas shift (RWGS) reaction and preferential CO oxidation (PROX). GOLD2015: The 7th International Conference on Gold Science, Technology and its Applications, Cardiff, UK, Jul. 26, 2015.

 

Formation and role of surface oxygen vacancies during oxidation and reduction reactions on supported Au/metal oxide catalysts. GOLD2015: The 7th International Conference on Gold Science, Technology and its Applications, Cardiff, UK, Jul. 26, 2015.

 

Role of surface oxygen vacancies in heterogeneous Au catalysis. 249th ACS National Meeting, Denver (CO), USA, Mar. 22, 2015.

 

Oxidative coupling of aldehydes with methanol on nanoporous gold catalysts under ambient conditions. New England Catalysis Society 2014 Spring Symposium, Worcester (MA), USA, May 9, 2014.

 

Dynamic TAP reactor studies on the redox mechanism in the reverse water gas shift reaction: Interaction of CO2 and H2 with a Au/CeO2 catalyst. 11th European Congress on Catalysis–EuropaCat-XI, Lyon, France, Sept. 1, 2013.

 

Low-temperature CO oxidation on nanoporous Au catalysts derived from a AuCu alloy: A 46. Jahrestreffen Deutscher Katalytiker mit dem Jahrestreffen Reaktionstechnik 2013, Weimar, Germany, Mar. 14, 2013.

 

On the mechanism of the reverse water gas shift reaction: Dynamic TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst. GOLD2012: The 6th International Conference on Gold Science, Technology and its Applications, Tokyo, Japan, Sep. 07, 2012.

 

Comparative studies of CO oxidation on nanoporous Au catalysts derived from AuAg and AuCu alloys: insights into the nature of active sites. 45. Jahrestreffen Deutscher Katalytiker mit dem Jahrestreffen Reaktionstechnik 2012, Weimar,
Germany, Mar. 14, 2012.

 

On the role of residual Ag in nanoporous Au catalysts for CO oxidation: A combined micro-reactor and TAP reactor study. 44. Jahrestreffen Deutscher Katalytiker mit dem Jahrestreffen Reaktionstechnik 2011, Weimar, Germany, Mar. 14, 2011.

 

Scale effect in the surface chemistry of nanoporous materials. Statusworkshop 2010 des Kompetenznetzes ‘Funktionelle Nanostrukturen’ 2010, Bad Herrenalb, Germany, Sep. 15, 2010.

 

Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor. 43. Jahrestreffen Deutscher Katalytiker mit Jahrestreffen Reaktionstechnik 2010, Weimar, Germany, Mar. 14, 2010.

 

Synthesis and catalytic properties of highly efficient gold catalysts supported on manganese oxides. Annual Symposium on Catalysis of the Shanghai Chemistry and Chemical Engineering Societies, Shanghai, China, Dec. 12, 2008.

 

Highly effective methanol steam reforming Cu/ZnO catalyst prepared by a dry mechanochemical approach based on oxalate precursor synthesis. The 13th National Congress on Catalysis, Lan Zhou, Gansu Province, China, Sept. 17, 2006.

Version: 5.0
Created at 4/19/2016 9:09 AM by Phyllis L. King
Last modified at 6/23/2016 9:46 AM by Phyllis L. King